Hörhold, Maria; Laepple, Thomas; Freitag, Johannes; Bigler, Matthias; Fischer, Hubertus; Kipfstuhl, Sepp (2012). On the impact of impurities on the densification of polar firn. Earth and Planetary Science Letters, pp. 93-99. 10.1016/j.epsl.2011.12.022
Text
hoerhold12epsl.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (1MB) | Request a copy |
Understanding polar firn densification is crucial for reconstructing the age of greenhouse gas concentrations extracted from ice cores, and for the interpretation of air in ice as a dating tool or as a climate proxy. Firn densification is generally modeled as a steady burial and sintering process of defined layers, where the structure of the layering is maintained along the whole firn and ice column. However, available high-resolution density data, as well as firn air samples, question this picture and point to a lack of understanding of firn densification. Based on analysis of high-resolution density and calcium concentration records from Antarctic and Greenland ice cores, we show for the first time that also impurities may have a significant impact on the densification. Analysis of firn cores shows a correlation between density and the calcium ion (Ca++) concentration, and this correlation increases with depth. The existence of this relationship is independent of the local climatic conditions at the core sites analyzed. The strong positive correlation between the density and the logarithm of Ca++ concentration indicates that impurities induce softening and lead to faster densification over a wide range of concentrations. In one core, the impurity effect manifests itself so strongly that the density develops a seasonal cycle closely following the seasonal cycle of Ca++. Our results clearly show that the structure of the firn layering changes with depth and suggest that the increased variability in density observed in deep firn, recently described as a universal feature of polar firn, may arise from the influence of Ca++ and/or other impurities. The impurity effect is likely to have direct implications on our understanding of glacial firn densification and on glacial gas age estimates.
Item Type: |
Journal Article (Original Article) |
---|---|
PHBern Contributor: |
Bigler, M. |
Language: |
English |
Submitter: |
Matthias Bigler |
Date Deposited: |
01 Feb 2024 14:04 |
Last Modified: |
02 Feb 2024 13:00 |
Publisher DOI: |
10.1016/j.epsl.2011.12.022 |
PHBern DOI: |
10.57694/7259 |
URI: |
https://phrepo.phbern.ch/id/eprint/7259 |