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Abstract

Detailed knowledge about the intra-urban air temperature variability within a city is crucial

for the implementation of adaptation strategies to counteract the negative effects of urban

heat stress. Various methods to model urban-rural temperature differences exist, but they

often only cover certain periods (heatwave, hot day) or meteorological conditions (sunny

and calm) due to computational limitations or limited data availability. Here, we present a

land use regression approach to model nocturnal air temperature fields for every single

night of the summers 2018 to 2020 in a city with complex terrain (Bern, Switzerland). Fur-

thermore, we investigate the applicability of different model structures and straight-forward

computable GIS variables to model cold air drainage, which exerts an important influence

on the local-scale climate of cities with complex terrain. The geostatistical models are cali-

brated with in-situ data of a dense low cost air temperature measurement network and high

resolution spatiotemporal (land use and meteorology) data, which are all publicly available.

The resulting land use regression models are capable to model and map intra-urban air tem-

perature differences with a good model performance (R2: 0.65–0.71; RMSE: 0.69–0.76 K).

Evaluations with data from additional measurement stations and periods (summer 2021)

show that the models are able to estimate different meteorological and spatial conditions,

but that the representation of small-scale topographic features remains difficult. However,

the comparatively low computational and financial effort needed to calculate nocturnal air

temperature fields at daily basis enable new applications for cities with restricted resources

for various areas of interest, such as urban planning (e.g. effect of heat mitigation policies)

or heat risk management (e.g. analyze small-scale urban heat vulnerability).

Introduction

Mean summer air temperatures as well as the likelihood for air temperature extremes such as

very hot days (Tmax� 35˚C) and tropical nights (Tmin� 20˚C) are increasing across Europe

due to the ongoing anthropogenic warming [1,2]. Cities are particularly prone to this shift in
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summer air temperatures due to the so-called urban heat island (UHI) effect which leads to

excess temperatures in urban environments [3], especially during night [4]. The UHI effect is

mainly caused by high heat capacities of the used construction material, large fractions of

impervious surfaces, low albedos due to the rather dark surfaces and a lack of vegetation and

ventilation [3]. Since various negative impacts for cities regarding public health (e.g. increased

fatigue, cardiovascular problems), environment (e.g. increased vulnerability of urban trees) or

economy (e.g. cooling costs, reduced productivity of people) may arise from urban heat

excesses, adaptation strategies to counteract UHIs should be implemented [5].

To plan and implement adequate adaptation measures, detailed knowledge about the air

temperature distribution within a city is crucial. Since observational networks in urban envi-

ronments imply relatively high costs [6] and national weather services typically do not main-

tain measurement stations within the city [7] different methods to assess and map urban

temperatures have been applied in the recent past. The most widespread approaches include

satellite-based land surface temperature analyses (which is not comparable with air tempera-

ture since the UHI effect is the largest during the day; e.g. [8,9]), numerical urban climate

model simulations (e.g. [10,11]), or analyses based on self-designed urban air temperature

measurement networks (e.g. [12–14]). Often, only limited timespans with homogeneous syn-

optic conditions favoring large UHI intensities (e.g. hot days or heatwaves) are investigated

due computational limitations (e.g. process based numerical urban climate models) or limited

data availability (e.g. satellite images with clouds). However, for several applications such as

the assessment of heat risk for the urban populations (e.g. [15]) or the planning of UHI mitiga-

tion strategies (e.g. [16]), timespans also covering a variety of synoptic conditions are needed.

Additionally, extended modeling periods would also enable the possibility to calculate and

investigate threshold statistics such as the number of tropical nights in a specific

neighborhood.

The combination of in-situ data from a low cost urban air temperature measurement net-

work with publicly available spatial data offers the opportunity of conducting daily models and

maps of entire summer periods with geostatistic land use regression (LUR) models with rela-

tively low computational and financial effort [17]. Since the formation and the magnitude of

the UHI effect depends to a large extent on meteorological preconditions [18], it is crucial to

incorporate meteorological variables, if a larger timespan is analyzed [4,17]. Many studies have

been conducted using meteorological variables as predictors of UHI intensities, of which wind

speed and cloud cover (solar radiation) were often identified as the meteorological variables

having the greatest impact on the UHI [4,18–21]. In addition, other variables such as relative

humidity [20,21] or daily temperature range [4] were identified as predicting variables. Precip-

itation is rarely investigated, since many studies focus on weather conditions that exacerbate

urban heat, which implies that days with precipitation are often excluded from the analyses

[4,14], although the reducing effect of precipitation on the UHI intensity is evident [22].

In addition to meteorological and land use patterns, cold air drainage (CAD) might be

another important factor shaping the air temperature distribution within a city [23,24]. Such

cooling airflow systems at local scales are mainly caused by drainage due to hilly terrain [25]

and depend on the interaction of such topographical features and urban morphology. In exist-

ing LUR studies, such specific cold air variables are often not incorporated (e.g. [4,26,27]) or

the focus is set on ventilation paths (e.g. with the proxy front area index, [28,29]) which do not

account for CAD caused by terrain features, since the spatial connectivity between cold-air

source areas (production) and urban areas (impact) is not considered [24]. However,

approaches to model topographic proxies for CAD exist and can be grouped in two categories:

First, flow accumulation proxies that take into account that cold air is denser than warm air

and that thus the flow and accumulation of cool air parcels can be modeled similar to water
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[17,30]. Second, relative elevation proxies that compare the position (elevation) of a grid cell

with the surrounding grid cells and expect cool air to accumulate in concave landforms [31–

34]. However, some of those studies were conducted in the field of ecology focusing on envi-

ronmental conditions outside of urban environments [30–33]. The applicability of those prox-

ies in urban environments has thus received limited attention and comparisons between the

different approaches are lacking.

The aim of this study is to model nocturnal UHI intensities and map summertime night-

time air temperatures of Bern, Switzerland for every night during the summers 2018 to 2020,

using a LUR approach that combines publicly available land use and meteorological data.

Based on data of a dense urban measurement network [35] and previous LUR models [17], we

expand the models from heatwave means to daily fields and evaluate different model structures

and CAD variables to estimate the nocturnal air temperature variability in a city with complex

topography.

Data and methods

Study site

With 134’000 inhabitants, Bern is a medium-sized city in Switzerland [36]. The city is located

in the mid-Western part of the Swiss Plateau at a mean elevation of 550 m.a.s.l. and is charac-

terized by its complex topography: Several hills, including two which reach more than 850 m.

a.s.l. in the northeast (Bantiger, 947 m.a.s.l.) and in the south (Gurten, 858 m.a.s.l.), various

depressions, and a river (Aare) shape the natural topography of Bern and its surroundings [23]

(Fig 1). Important regional effects of the complex topography are air temperature inversions

with different thickness layers that evolve in summer during every second night [37] and the

canalization of the wind due to the blocking of the nearby mountain ranges Jura and Alps

which leads to a domination of southwestern and northeastern wind systems [23] (Fig 1A).

During calm nights, also weak katabatic winds from southeast occur [23]. Bern experiences

warm humid summers with a mean summer air temperature of 17.4˚C and a mean summer

precipitation amount of 333 mm throughout the climatological reference period 1980–2010

[38].

Data

Urban air temperature data. From 2018 to 2021, a dense urban air temperature measure-

ment network is operated in the city of Bern throughout summertime. It consists of 70 to 90

stations, which are installed from mid-May to mid-September and record the air temperature

at an interval of 10 min. The stations are mounted at a height of approximately 3 m at free-

standing poles and cover the microclimatic and topographic heterogeneity of the city. Even

though the stations consists of low cost devices (about 65 CHF per station) and are only pas-

sively ventilated, they are able to capture nighttime temperatures (22 pm to 6 am) with only

small biases when compared to professional actively ventilated sensors (mean bias: -0.12 to

0.23 K, [35]). During daytime, a mean positive bias of 0.61 to 0.93 K is observed, which implies

that the uncertainties due to the measurement devices might be larger than the observed day-

time urban heat island [17,35]. Due to these constraints, we focus on the nocturnal tempera-

ture data in this study. Hence, for the calibration of the models, we use mean nighttime

temperatures (22 pm to 6 am) of 61 stations that were placed at the same location from 2018

until 2020 (276 days; Fig 1B). Data from 17 additional stations in 2018 as well as data of the

remaining 55 calibration station in summer 2021 is used for the evaluation (92 days each).

Meteorological reference data. The official measurement station in Bern maintained by

the Federal Office of Meteorology and Climatology (Meteoswiss) is located about 5 km north
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Fig 1. Overview on the location of the study area (A) with the main topographical features of Switzerland and the

study area’s detailed topography (bright / dark), land cover, and air temperature measurement locations (B). Blue dots

represent the 61 calibration stations and red dots the 17 evaluation stations of 2018. The yellow (Gurten hill, mounted

in 2021) and purple (Egelsee depression, mounted in 2019) dots represent the evaluation stations over complex terrain.

Additionally indicated are the most important valleys and hills in the surroundings of Bern. The base layers can be

downloaded using the following links https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html (topography)

and https://geoportal14.laborplatz.ch/de/geodaten/geoproduktedownload/listing/display?

type = geoproduct&code = MOPUBE (land use).

https://doi.org/10.1371/journal.pclm.0000089.g001

PLOS CLIMATE Modeling nocturnal urban air temperature fields at a daily basis

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000089 December 5, 2022 4 / 20

https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html
https://geoportal14.laborplatz.ch/de/geodaten/geoproduktedownload/listing
https://doi.org/10.1371/journal.pclm.0000089.g001
https://doi.org/10.1371/journal.pclm.0000089


of the city center in Zollikofen at an elevation of 553 m.a.s.l. (Fig 1B). It is a WMO-certified

station, which should per definition not be influenced by urban heat [39]. Out of the 12 differ-

ent meteorological variables recorded, we use air temperature at two meters as the basis tem-

perature for the models as well as relative humidity, precipitation, global solar radiation and

wind speed and wind direction as explanatory variables (Table 1), which are averaged over a

24 h (6 am to 6 am) and a nighttime 8 h interval (22 pm to 6 am). The data is publicly available

and can be downloaded on the website of Meteoswiss [40].

Land use variables. In order to model the influence of the land use on the urban night-

time air temperatures, 14 land use and 4 additional CAD variables were calculated (Table 1),

which are shortly described in the following. For more detailed information about the compu-

tation of the land use variables, see [17].

Six land cover parameters were derived from the cantonal cadastral survey [41]: Buildings

[BUL], Open Space Sealed [SE], Open Space Garden [GA], Open Space Agriculture [AC],

Open Space Forest [FO] and Open Space Water [WA]. Geospatial information regarding

topography were derived from a high-precision digital elevation model [42] (Slope [SLO],

Northness [NOR]). Moreover, the difference in altitude from a location to the reference station

Table 1. Temporal and spatial variables tested in this study with their abbreviations, chosen buffer widths and units as well as their data source and available

resolution.

Variable Abbre-viation Chosen Buf-fer Width (m) Unit Data Source Resolution

Temporal Variables

Global Solar Radiation G - Wm-2 [40] 10 min

Precipitation RR - mm [40] 10 min

Relative Humidity RH - % [40] 10 min

Wind Speed FF - ms-1 [40] 10 min

Wind Direction DD - ˚ [40] 10 min

Spatial Variables—Land Cover

Buildings B 250 % [41] - (vector data)

Open Space Sealed SE 1000 % [41] - (vector data)

Open Space Garden GA 25 % [41] - (vector data)

Open Space Agriculture AC 750 % [41] - (vector data)

Open Space Forest FO 1000 % [41] - (vector data)

Open Space Water WA 150 % [41] - (vector data)

Spatial Variables -Topography

Altitude Difference AD - m [42] 2 m

Slope SLO 50 ˚ [42] 2 m

Northness NOR 100 0 to 1 [42] 2 m

Spatial Variables—Vegetation

Amount of Trees AMT 100 Count [43] - (vector data)

Vegetation Height VH 150 m [44] 1 m

Spatial Variables—Urban Surface Geometry

Mean Building Height MBH 150 m [45] - (vector data)

Building Volume Density BVD 500 m [45] - (vector data)

Sky View Factor SVF 50 0 to 1 [42,44,45] 5 m

Spatial Variables—Cold Air Drainage

Flow Accumumlation FA 100 Number [42] 2 m

Flow Accumulation with Buildings FAB 100 Number [42,44,45] 5 m

Relative Height REH 500 Number [42] 2 m

Topographic Position Index TPI 500 Number [42] 2 m

https://doi.org/10.1371/journal.pclm.0000089.t001
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(Altitude Difference [AD]) was also derived from that dataset. Detailed information about veg-

etation parameters were derived from a topographic landscape model [43] (Amount of Trees

[AMT]) and from the Swiss Federal Research Institute WSL [44] (Vegetation Height [VH]).

Finally, information about the urban surface geometry (buildings) was gained from the swiss-

BUIDINGS3D2.0 dataset [45] (Mean Building Height [MBH], Building Volume Density

[BVD] and Sky View Factor [SVF]).

Cold air drainage variables. In total four different CAD variables of two different groups

were derived. The first group was calculated with the commands “flow direction” and “flow

accumulation” in ArcGis (version 10.7.1) [46] using a high-precision digital elevation model

(DEM) of Bern [42]. With these features, the flow from a cell of a raster to its neighboring cells

is calculated (according to the height of the cell) and then accumulated over the entire area.

This approach was originally developed for hydrological analyses [47]. Applied to CAD, it fol-

lows the idea that cold air behaves similar than water: cool dense air follows the topography

[33] and accumulates in the steepest descents [30]. This method was already tested for Bern in

an earlier study. Although it worked well in the model evaluation, the amplitude of cooling

appeared to be overestimated at some non-monitored locations when mapping it [17]. In this

study, different DEM resolutions (25 to 250 m) were tested and logarithmic variables were cal-

culated. One of the variables is calculated using a DEM (Flow Accumulation; FA) and one

with buildings and vegetation placed on the DEM (Flow Accumulation with buildings; FAB)

(Table 1). This method implies that the buildings block CAD, but has the disadvantage that

CAD may also form at the rooftops of buildings.

The second group of CAD variables was calculated based on comparisons of the elevation

of a grid cell with its neighboring cells. The first approach compares the elevation of a site with

the minimum elevation within a specified radius in order to distinguish locations where air

would drain away (high value) or cold air could pool (low value). This so called “Relative

Height” REH is the third CAD variable used here and has been tested in earlier studies [31,32].

If not the minimum, but the mean elevation of the surrounding grid cells is subtracted from a

grid cell, the “Topographic Position Index” (TPI) is calculated [34]. Negative TPI values indi-

cate concave positions (valley) where cold air drainage is favored, positive TPI values indicate

convex positions (hilltop) where no cold air drainage is expected. TPI is the forth CAD variable

tested in this study.

Buffer zone radii. In LUR, temperatures at a specific location are expressed as functions

of land use characteristics in circular areas surrounding the location (buffers). Depending on

the land use variable, the radius of that area is chosen differently [48]. Here, we tested buffer

radii values from 25 to 1000 m. The selection of the best fitting buffer zone radii per land use

variable was conducted with linear regression modeling (see [17] for detailed description,

Table 1).

Model structure. The study aims to develop spatiotemporal geostatistical models for esti-

mating the nighttime (22 pm to 6 am) air temperature fields in Bern with the antecedent men-

tioned data. We use the mean air temperature difference of a station of the urban network to

the reference station in Zollikofen as the response variable of the model. Although the defini-

tion of stations to be “rural” and “urban” is problematic and hence the use of term “UHI inten-

sity” not fully appropriate [49], we use that term for these air temperature differences due to

simplicity reasons. To calculate absolute nighttime air temperature fields, we add the observed

mean nighttime air temperature of Zollikofen to the modelled UHI intensities.

As first step of the modeling process, we analyze the independent influence of meteorology

and land use on the UHI intensity to decide upon which variables are used for the further

modeling. Whereas the investigation of the meteorological variables is important for the esti-

mation of potential UHI intensity in general (e.g. strong UHI intensity expected after a sunny
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day and a calm, dry night), the land use variables are used to estimate the urban heterogeneity

and intra-urban distribution of temperature. As second step, three different model structures

to combine meteorological and land use variables are tested: First, we build an additive model

(ADD; Table 2), where meteorological and land use variables are combined with a multiple lin-

ear regression (MLR) model similarly to the approach of [28] applied to Honkong. Second, a

two-step multiplicative structure is tested (MULT, Table 2) according to the diagnostic UHI

equation model for cities in northwestern Europe [4]. Here, a meteorological MLR model is

first fitted, independently from the land use variables. Based on that meteorological model, a

best fit of constant is calculated for every station, based on the mean absolute error in order to

get the equation “constant × meteorological model”. As a last step, another MLR is conducted

to represent the constant with land use variables that will have been selected in the previous

chapter [4]. As a third model structure, we test a novel approach of an interactive model struc-

ture (INT, Table 2). The idea of that approach is that possible interactions between meteorol-

ogy and land use variables are considered [50]. Non-significant interaction pairs (p> 0.001)

are omitted from the model. Although the computation of the model is rather simple, the

structure gets more complicated (Table 2).

Mapping

To illustrate the outputs of the different LUR models, we map the modeled air temperatures

with a 50 m x 50 m resolution for the greater area of Bern using R [51]. We show the predicted

air temperature distribution of two meteorologically different nights with conditions favoring

and hindering strong UHI intensities.

Evaluation

To evaluate the models, additional station data is used. We use data from 17 additional stations

that were only installed during summer 2018 (Fig 1B) as well as data of the remaining calibra-

tion stations that were installed during summer 2021 (55 out of 61). Explained variance (R2),

root mean square error (RMSE) and mean bias (MB) are calculated in order to assess the per-

formance of the models. Additionally, we compare the ability of the different models to predict

Table 2. The different model structures.

ADD
TSji � TZi ¼ ð

Xn

t¼1

at �MtiÞ þ ð
Xm

s¼1

bs � LsjÞ

MULT
TSji � TZi ¼ ð

Xn

t¼1

at �MtiÞ � ð
Xm

s¼1

bs � LsjÞ

INT
TSji � TZi ¼ ð

Xn

t¼1

at �MtiÞ þ ð
Xm

s¼1

bs � LsjÞþ

þð
Xn

t¼1

Xm

s¼1

cts � ðMti � LsjÞÞ

TSij represents the observed air temperature at station j of the urban temperature network for the night i. TZ

represents the observed nighttime air temperature at the reference station in Zollikofen. M denotes the temporal and

L the spatial variables of whom n and m exist. at represents the slopes of the temporal, bs the slopes of the spatial and

cq the slopes of the combined predictors.

https://doi.org/10.1371/journal.pclm.0000089.t002
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nighttime air temperatures over complex topographical features with additional data from

three locations at the Gurten hill south of the city at elevations of 848, 694 and 631 m.a.s.l.

mounted in summer 2021, as well as with data from three stations which were mounted during

summer 2019 in a small-scale topographic depression within the built up area (“Egelsee”) in

the east of the city (Fig 1B).

Results

Independent selection of meteorological and land use variables

Meteorology. For this analysis, the mean nighttime UHI intensity per day of all 61 sta-

tions is calculated (n = 276) and compared with the corresponding value of the meteorological

variables (Fig 2). A positive correlation of global solar radiation (r = 0.58; Fig 2A) and UHI

intensity, as well as negative relations between precipitation and UHI intensity (r = - 0.47; Fig

2B) and relative humidity and UHI intensity (r = -0.49; Fig 2D) can be observed. The influence

of wind is less evident, a slight increase in UHI intensity with stronger wind is found (r = 0.06;

Fig 2C).

Further analyses on the wind showed the important role of the wind direction. Enhanced

winds from north (average between 270 and 90˚) is associated with an increase of the UHI

intensity (r = 0.41), while winds from south result in a decrease (r = -0.63). This feature is the

most prominent if nighttime winds are analyzed (Fig 2E). Subsequent analysis on precipitation

showed that the occurrence of precipitation itself is more important than the actual amount

and that nighttime precipitation shows a stronger relationship with the UHI intensity than

24-hour precipitation (Fig 2F).

With the variables mentioned above, MLR modeling was conducted. The results showed

that global solar radiation, winds from South (SWI), relative humidity and the Boolean

Fig 2. Linear regressions of meteorological variables and the mean UHI intensity per day (A-E) and the influence of

the amount of precipitation on the UHI intensity (F). The lines represent the linear regressions and r the strength of

the correlation (A-E).

https://doi.org/10.1371/journal.pclm.0000089.g002
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nighttime precipitation variable (Nightrain; NR) had a significant influence on the mean UHI

intensity. Since global solar radiation and relative humidity showed a high collinearity, and rel-

ative humidity contributed only very little to the explanation of the UHI intensity of the

model, it was excluded in the final meteorological model and the subsequent calculations. The

final meteorological model explains 69% of the variance of the mean UHI intensity per day

with a RMSE of 0.45 K (Table 3, Model “MET”).

Land use. For this analysis, the mean UHI intensity per station over the 276 days is calcu-

lated (n = 61). MLR analyses were conducted for the four models incorporating different CAD

variables. However, all models include the same land use variables and the performance is very

similar, with R2 values between 0.86 and 0.87 and RMSEs between 0.31 and 0.32 K (Table 3,

Models FA, FAB, TPI, REH).

Combining meteorology and land use

The combined models reach R2 values from 0.65 to 0.71 and RMSEs from 0.69 to 0.76 K

(Table 4). The performance of the models increase with their complexity, while the differences

between the CAD variables remain small (Tables 4 and 5). Irrespective of the model complex-

ity, strongly negative UHI intensities seem to be poorly estimated by all models (Fig 3).

Mapping the urban air temperature distribution of two different nights

The predicted nighttime air temperatures of two meteorologically diverse nights are compared

in order to investigate differences in model performance related to different model structures

(Figs 4 and S2–S4) and CAD variables (Figs 5 and S5–S10). Favorable conditions to form large

UHI intensities were experienced during the night of the 5th of August 2018: After a sunny day

(G = 304.9 Wm-2), a dry and calm (FF = 0.73 ms-1) night followed, with winds from northeast.

While the solar radiation was similar during the day of the 9th August of 2019 (G = 271.6 Wm-

Table 3. Structure of the independent meteorological (MET) and the land use models with the four different

CAD proxies tested (FA, FAB, TPI and REH; first step of the modeling process). Indicated are the number of

observation of each model (n) and the corresponding R2 and RMSE values. SWI stands for winds from south and NR

for the Boolean nighttime precipitation variable. YES means it rained and the value is 1, otherwise it is 0.

Model Structure n R2 RMSE

MET 0.53 + 0.0043 × G—0.519 × SWI—0.479 × NR (YES) 276 0.69 0.45 K

FA 1.776 + 2.121× BUL—1.653 × FO—0.644 × GA—2.592 × AC—0.056 × VH—

0.211 × FA + 0.002 × AD

61 0.87 0.31 K

FAB 1.834 +2.160 × BUL—1.784 × FO—0.708 × GA—2.626 × AC—0.058 × VH—

0.238 × FAB + 0.003 × AD

61 0.86 0.33 K

TPI 1.777 +1.820 × BUL—1.840 × FO—0.732 × GA—2.752 × AC—0.061 × VH

+ 0.012 × TPI + 0.002 × AD

61 0.86 0.32 K

REH 1.564 +1.987 × BUL—1.830 × FO—0.726 × GA—2.744 × AC—0.058 × VH

+ 0.006 × REH + 0.002 × AD

61 0.86 0.32 K

https://doi.org/10.1371/journal.pclm.0000089.t003

Table 4. Calibration statistics and model performance (R2 and RMSE) for the combined models (second step of the modeling process). Three different model struc-

tures (ADD, MULT and INT) with four different CAD variables (FA, FAB, TPI and REH) were calibrated with m = 61 stations for n = 276 days.

Model structure FA FAB TPI REH

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

ADD 0.66 0.75 K 0.65 0.76 K 0.65 0.76 K 0.66 0.76 K

MULT 0.67 0.74 K 0.67 0.74 K 0.67 0.74 K 0.67 0.74 K

INT 0.71 0.69 K 0.71 0.69 K 0.71 0.69 K 0.71 0.69 K

https://doi.org/10.1371/journal.pclm.0000089.t004
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2), a cold front reached Switzerland after sunset. It rained in Bern during the night (RR = 11.7

mm), and southwesterly winds reached a mean strength of 1.89 ms-1. However, the mean

nighttime air temperatures at Zollikofen were similar with 21.7˚C at the 5th of August 2018

and 20.9˚C at the 9th of August 2019.

While the air temperature distribution and the performance of the models are similar dur-

ing the night with favorable conditions (Fig 4A, 4C and 4E), differences appear between the

model structures for the night with unfavorable conditions to form large UHI intensities (Fig

4B, 4D, and 4F). A strongly pronounced UHI is predicted by the ADD model (Fig 4B), while

almost no temperature variability is estimated by the MULT model (Fig 4D). A weak UHI is

predicted by the INT model, which results in a better model performance for that night (r:

0.90 compared to 0.80 (ADD) and 0.73 (MULT); Fig 4B, 4D, and 4F).

The predicted nighttime air temperatures of the INT models look very similar for all CAD var-

iables with differences being mostly smaller than 0.5 K (Figs 4, 5 and S2–S10). Larger differences

are observed during the night of the 5th of August 2018 close to the hills and valleys outside of the

city, such as Gurten hill and its adjacent valley in the south (Köniztal; Figs 1B and 5). While the

slopes of the hills are estimated to be warmer by the REH model (Fig 5A–5C), the temperatures of

Table 5. Structure of the combined TPI models (second step of the modeling process). The models of the other

CAD variables can be found in the supplementary material (S1–S3 Tables).

TPI

models

Structure

ADD 1.1 + 1.83 × BUL—1.85 × FO—0.74 × GA—2.76 × AC—0.06 × VH + 0.002 × AD + 0.01 × TPI +

0.004 × G—0.52 × SWI—0.48 × NR

MULT (0.53 + 0.004 × G—0.52 × SWI—0.48 × NR) ×
(1.4 + 1.84 × BUL—1.75 × FO—0.57 × GA—2.05 × AC—0.04 × VH + 0.01 × AD + 0.01 × TPI)

INT 0.6 + 1.01 × BUL—0.72 × FO—0.29 × GA—0.61 × AC—0.03 × VH—0.001 × AD—0.001 × TPI +

0.007 × G—0.49 × SWI—1.0 × NR +

0.005 × (G × BUL) - 0.006 × (G × FO) - 0.002 × (G × GA) - 0.01 × (G × AC) - 0.0001 × (G × VH) +

0.00005 × (G × AD) + 0.00006 × (G × TPI) -

0.48 × (SWI × BUL) + 0.37 × (SWI × FO) + 0.35 × (SWI × AC) - 0.008 (SWI × VH) - 0.001

(SWI × AD) +

1.24 × (NR × FO) + 0.33 (NR � GA) + 1.63 × (NR × AC) + 0.02 × (NR × VH) - 0.006 (NR × AD) -

0.006 (NR × TPI)

https://doi.org/10.1371/journal.pclm.0000089.t005

Fig 3. Predicted (x-axis) versus measured UHI intensities of the three different TPI models. The plots of the models with the other CAD variables can be

found in the supplementary material (S1 Fig).

https://doi.org/10.1371/journal.pclm.0000089.g003
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the valleys (as well as the river) are modeled lower with the TPI model (Fig 5A, 5D and 5E). Sev-

eral cold air flows are modeled by the flow accumulation based models, resulting in these locations

appearing cooler in those models (Fig 5B–5E). However, the performance of all CAD models is

virtually the same for the two days mapped and for the calibration period.

Fig 4. Predicted mean nighttime air temperatures derived from the ADD (A and B), MULT (C and D), and INT

models (E and F) with the CAD variable TPI for the 5th of August 2018 (A, C, and E) and the 9th of August 2019 (B, D,

and E). The dots show measured mean nighttime air temperatures of the correspondent night at the sites used for the

modeling. The model performance is indicated by the correlation (r), the root mean square error (RMSE) and the

mean bias (MB). The resulting maps of the other CAD variables as well as high resolution maps of the INT models of

all CAD variables can be found in the supplementary material (S2–S8 Figs). The base layer (building shadows) can be

downloaded using the following link: https://www.swisstopo.admin.ch/en/geodata/landscape/buildings3d2.html.

https://doi.org/10.1371/journal.pclm.0000089.g004
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Model evaluation

Additional stations in 2018. Applied to the data of the 17 additional stations in 2018, the

performance of the models is similar than with the calibration data (Tables 4 and 6). The UHI

intensity of these additional stations are in general slightly underestimated (MB: -0.21 to -0.29

Fig 5. Deviations in predicted mean nighttime air temperatures between the four different Cold Air Drainage

(CAD) Interaction models for the 5th of August 2018. The figure of the 9th of August 2019 can be found in the

supplementary material (S10 Fig). The abbreviations stands for the different CAD proxies: REH = Relative Height;

TPI = Topographic Position Index; FA = Flow Accumulation; FAB = Flow Accumulation with Buildings. The base

layer (building shadows) can be downloaded using the following link: https://www.swisstopo.admin.ch/en/geodata/

landscape/buildings3d2.html.

https://doi.org/10.1371/journal.pclm.0000089.g005
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K). The performances of the different model structures are closer together, compared to results

of the calibration data.

Model stations during summer 2021. Applied to data of the 55 remaining stations in

2021, the model performance is slightly worse compared to the calibration data (Table 4) and

the UHI intensities of all stations are overestimated by 0.41 to 0.43 K (Table 6). While the

CAD variables lie close to each other, the performance of the model structures increases with

increasing complexity.

Evaluation over small-scale complex topographic features

Gurten hill 2021 and Egelsee depression 2019. The evaluation on the three additional

stations at Gurten hill in 2021 shows that the air temperatures are (slightly) overestimated by

all models. While the positive mean biases and the RMSEs of the MULT models are large, the

INT models show the highest R2, the lowest RMSEs, and only very small positive mean biases

(Table 7). The differences between the CAD proxies are small with REH models showing

slightly lower model fits (RMSE 1.12 to 1.88 K compared to 1.02 to 1.74 K).

Applying the LUR models on the additional data at the topographic depression “Egelsee”

showed that none of them could adequately represent this small-scale cold air pool, which can

reach up to -3 K during favorable conditions. The air temperatures of the three stations are

overestimated by more than 1 K on average and the variance could not be explained (R2 =

0.00). All CAD proxies perform similarly poor (Table 7).

Table 6. Resulting R2s, RMSEs and MB of the different model structures and CAD variables for the evaluation with additional data of the summers 2018 (n = 92;

m = 17) and 2021 (n = 92; m = 55).

Model structure FA FAB TPI REH

R2 RMSE MB R2 RMSE MB R2 RMSE MB R2 RMSE MB

Additional stations in 2018

ADD 0.68 0.83 K -0.23 K 0.69 0.85 K -0.26 K 0.69 0.84 K -0.26 K 0.70 0.84 K -0.28 K

MULT 0.72 0.76 K -0.25 K 0.72 0.77 K -0.27 K 0.72 0.77 K -0.28 K 0.73 0.76 K -0.29 K

INT 0.71 0.77 K -0.21 K 0.71 0.78 K -0.24 K 0.71 0.78 K -0.24 K 0.73 0.77 K -0.26 K

Model station in 2021

ADD 0.59 0.84 K +0.43 K 0.59 0.84 K +0.41 K 0.60 0.84 K +0.42 K 0.59 0.84 K +0.42 K

MULT 0.63 0.82 K +0.42 K 0.63 0.82 K +0.41 K 0.63 0.81 K +0.41 K 0.63 0.82 K +0.43 K

INT 0.67 0.77 K +0.42 K 0.66 0.77 K +0.42 K 0.67 0.77 K +0.42 K 0.67 0.77 K +0.42 K

https://doi.org/10.1371/journal.pclm.0000089.t006

Table 7. Resulting R2s, RMSEs and MBs of the different model structures and CAD variables for the evaluation with complex topographic features Gurten hill

(n = 92; m = 3) and Egelsee depression (n = 92; m = 3).

Model structure FA FAB TPI REH

R2 RMSE MB R2 RMSE MB R2 RMSE MB R2 RMSE MB

Gurten hill 2021

ADD 0.31 1.12 K +0.11 K 0.31 1.12 K +0.07 K 0.29 1.15 K +0.11 K 0.29 1.22 K +0.44 K

MULT 0.33 1.69 K +1.25 K 0.33 1.72 K +1.28 K 0.31 1.74 K +1.26 K 0.35 1.88 K +1.48 K

INT 0.45 1.02K +0.01 K 0.46 1.03 K +0.08 K 0.47 1.04 K +0.01 K 0.46 1.12 K +0.28 K

Egelsee depression 2019

ADD 0.00 1.54 K +1.27 K 0.00 1.60 K +1.32 K 0.00 1.54 K +1.24 K 0.00 1.51 K +1.21 K

MULT 0.00 1.61 K +1.32 K 0.00 1.66 K +1.36 K 0.00 1.61 K +1.31 K 0.00 1.57 K +1.27 K

INT 0.00 1.59 K +1.27 K 0.00 1.64 K +1.33 K 0.00 1.56 K +1.24 K 0.00 1.53 K +1.21 K

https://doi.org/10.1371/journal.pclm.0000089.t007
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Discussion

Estimation of nocturnal air temperature variability using LUR models

The present study aims to model nocturnal UHI intensities and map summertime nighttime

air temperatures in a city with complex terrain using a LUR approach, whereas three different

model structures and four CAD variables are tested. Hereby, one crucial step is the selection of

the critical meteorological and land use variables. It has been shown in various studies, that

large UHI intensities are found during “calm and clear” (low wind speed and clear sky) nights

after radiation intense days [4,18–21]. This research leads to similar findings for the city of

Bern, but with the addition, that wind direction may also play an important role depending on

the location of the rural reference station. Here, the rural reference station is located in the

northeast of the city (Fig 1B), and if the winds originate from this direction, air masses close to

the reference station were likely to be exchanged faster than in the city, due to blocking by

buildings or orography. Hence, the temperature differences between urban sites and the rural

reference station in Zollikofen are even larger during nights with northerly winds than during

calm nights. Conversely, winds from southeast or southwest lead to strongly declining UHI

intensities (Fig 3E). Additionally, little attention has so far been given to the inclusion of pre-

cipitation variables in similar LUR modeling studies, since the focus has mainly been on condi-

tions favoring large UHI intensities [4,12,14]. However, the weakening effect of precipitation

on the UHI intensity in general is well documented [19,22] and should be incorporated if lon-

ger timespans are investigated. Here, a Boolean precipitation variable instead of a numerical

variable is used, which can be justified by the fact that precipitation events during the night

likely vanishes a substantial share of the urban heat, independently of the amount of

precipitation.

The land use variables that are significant in this study differ slightly from a previous study

in the same city, which only focused on land use variables and heatwave episodes [17]. While

the main pattern of open and vegetated areas having a cooling effect is similar, the cooling

effect of forested areas and dense vegetation is more explicit in this study. Contrariwise, the

cooling effect of water seems to be less pronounced if the entire summer is analyzed, which

might be due to the water temperatures not significantly being cooler than the air temperatures

during the night. Within the densely built areas, unsealed garden areas and vegetation lead to

lower local temperatures (Figs 4 and S2–S9). Another important difference compared to the

previous study is that altitude is directly incorporated in the model with the variable AD. This

allows for a modeling of warm hilltops and slopes during calm and clear nights (Fig 4A, 4C

and 4D), which is an important feature since such inversion patterns are a typical characteristic

of the local climate of Bern [37]. However, when analyzing such rural, hilly areas, it is impor-

tant to keep in mind that only a few rural stations were available for model calibration and vali-

dation, making uncertainties larger in these locations of the study area.

The evaluation with additional data (Table 6) shows that the model performance (R2 and

RMSE) is similar (summer 2018) or a bit lower (summer 2021) compared to the calibration

data (Table 4). The air temperatures are rather underestimated during 2018 (MB -0.21 to -0.29

K) and overestimated during 2021 (MB +0.41 to +0.43 K; Table 6). One likely reason for these

differences can be found in the fact that Switzerland experienced a very hot and record dry

summer 2018 and a rather cool and very wet summer 2021 [52,53]. The differences in air tem-

perature and precipitation might thus have led to a very different state of the vegetation during

these summers, having larger evaporative cooling capacities during summer 2021, which may

have caused lower UHI intensities. In this study, the land use variables including vegetation

are treated as static and thus do not account for changes due to inter-annual variability of

meteorological background conditions. An inclusion of such an additional variable accounting
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for the year to year changes in the state of the vegetation (e.g. NDVI) would be an interesting

supplement for future studies.

The presented LUR models are subject to additional limitations being worthwhile to be

mentioned. As such, shallow depressions may cause air temperature differences of several K

during nighttime [25], even within a city. The application of the models on a shallow depres-

sion shows that none of the models is able to represent such small-scale air temperature differ-

ences in an adequate manner (Table 7). This might be due to the rather large buffer radii of the

land use variables (up to 1000 m; Table 1) or the cooling effect of the CAD variables being to

weak: A detailed analysis of the CAD variables shows that they are only able to capture about

0.6 K of the cooling in the Egelsee depression, whereas differences of up to 3 K are reached

under favorable conditions. Another limitation is that the models tested here are static and do

not take into account weather patterns from previous days and resulting variables depending

on those, such as soil moisture, which may influence the present day air temperature patterns

[20]. Lastly, the exposition of a location to the wind is not incorporated, since no land use vari-

able was found which was able to represent this aspect.

Differences between model structures and CAD variables

Three model structures with different degrees of complexity and four straight forward com-

putable variables to incorporate cold air dynamics induced by topographic features are tested

in this study. Regarding the model structures, the MULT models shows inaccuracies if either a

station is not considerably warmer (or even cooler) than the reference station, or if a day with

meteorological conditions unfavorable for the formation of the UHI is modeled. In both cases,

one of the factors in the equation of the MULT model is found to be close to zero or negative

(Table 2), and the resulting variability of urban air temperatures is not realistic (Fig 3B).

Hence, this model structure is only appropriate if “cool” reference and “warm” urban stations

are used and only when days with meteorological conditions favoring large UHI intensities are

analyzed. Besides that, enhanced complexity leads to better performance. The inclusion of the

interaction terms leads to an increase in R2 between 0.057 and 0.058 (depending on the CAD

variable), which implies that the interaction effect accounts for 5.7 to 5.8% of the variance [50].

In the simple ADD model, the magnitude and the shape of the UHI remains similar for every

night (Fig 4A and 4B), whereas the effect of different meteorological conditions on the forma-

tion of urban heat islands (and also CAD) can be incorporated with the interaction terms.

The resulting air temperature fields of all CAD variables show more realistic patterns than

the simple flow accumulation approach of an earlier study [17] (Figs 4 and S2–S9). The largest

differences between the CAD variables can be found in areas where strong CAD is expected.

While models based on elevation based CADs model the typical pattern of temperature inver-

sions in a more pronounced way, flow accumulation based CADs are able to model cold air

paths along the topography (Fig 5). Due to the limited number of stations in the hilly areas and

the similar performance in calibration and evaluation, no statement about which CAD variable

to be the most appropriate can be made here. Additionally, it has to be stated that none of the

CAD variables is capable to model cooling effects of a small-scale depression within the city

(Table 7), and that potential blocking effects of buildings or trees are not incorporated by three

out of four CAD variables (FA, TPI and REH). Additional research and the evaluation of these

CAD variables in other cities with complex terrain would hence be beneficial.

Conclusions

The aim of this study was to model nocturnal UHI intensities and to map nighttime air tem-

perature fields in the city of Bern during summers 2018 to 2020 with a LUR approach based
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on air temperature data of a low cost measurement network and publicly available geospatial

and meteorological data.

The results show that, in addition to precipitation, global solar radiation and wind speed,

wind direction is an important factor for the distribution of the nocturnal urban air tempera-

tures variability in Bern. Further, we tested three different model structures to combine meteo-

rology and land use and four straight-forward computable variables to predict cold air

drainage. The resulting 12 models reached good model performances (R2 0.65 to 0.71; RMSE

0.69 to 0.76) which could be validated with additional data (R2 0.59 to 0.73; RMSE 0.77 to

0.85). While multiplicative model structures were not able to realistically predict the air tem-

peratures of cool stations and for days with meteorological conditions unfavorable for the for-

mation of urban heat, additive and integrative model structures performed well, of which the

latter is favored due to the possibility of modeling different magnitudes of urban heat island

intensity.

With the derived models, it is possible to calculate and map the air temperature distribution

of a city in complex terrain for every night of a summer using meteorological data of only one

official measurement station and publicly available land use data. With this method, only a

very low amount of computational (about 5 min on a basic computer for 92 days) and financial

(publicly available data) effort is needed to gain valuable information about the intra-urban

temperature distribution in a city which can then be used for various applications in urban

planning, heat risk management and future research.

Supporting information

S1 Fig. Predicted (x-axis) versus measured UHI intensities of all 12 models.

(TIF)

S2 Fig. Predicted mean nighttime air temperatures derived from the ADD (A and B), MULT

(C and D) and INT models (E and F) with the CAD variable FA for the 5th of August 2018 (A,

C and E) and the 9th of August 2019 (B, D and E). The dots show measured mean nighttime

air temperatures of the correspondent night at the sites used for the modeling. The model per-

formance is indicated by the correlation (r), the root mean square error (RMSE) and the mean

bias (MB). The base layer (building shadows) can be downloaded using the following link:

https://www.swisstopo.admin.ch/en/geodata/landscape/buildings3d2.html.

(TIF)

S3 Fig. Predicted mean nighttime air temperatures derived from the ADD (A and B), MULT

(C and D) and INT models (E and F) with the CAD variable FAB for the 5th of August 2018

(A, C and E) and the 9th of August 2019 (B, D and E). The dots show measured mean night-

time air temperatures of the correspondent night at the sites used for the modeling. The model

performance is indicated by the correlation (r), the root mean square error (RMSE) and the

mean bias (MB). The base layer (building shadows) can be downloaded using the following

link: https://www.swisstopo.admin.ch/en/geodata/landscape/buildings3d2.html.

(TIF)

S4 Fig. Predicted mean nighttime air temperatures derived from the ADD (A and B), MULT

(C and D) and INT models (E and F) with the CAD variable REH for the 5th of August 2018

(A, C and E) and the 9th of August 2019 (B, D and E). The dots show measured mean night-

time air temperatures of the correspondent night at the sites used for the modeling. The model

performance is indicated by the correlation (r), the root mean square error (RMSE) and the

mean bias (MB). The base layer (building shadows) can be downloaded using the following
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link: https://www.swisstopo.admin.ch/en/geodata/landscape/buildings3d2.html.

(TIF)

S5 Fig. High resolution maps of the Flow Accumulation (FA) interaction models for the

5th of August 2018 and the 9th of August 2019. The colored dots show the model stations

with the measured mean nighttime air temperatures of the correspondent night. The base

layer (building shadows) can be downloaded using the following link: https://www.swisstopo.

admin.ch/en/geodata/landscape/buildings3d2.html.

(JPG)

S6 Fig. High resolution maps of the Flow Accumulation with Buildings (FAB) interaction

models for the 5th of August 2018 and the 9th of August 2019. The colored dots show the

model stations with the measured mean nighttime air temperatures of the correspondent

night. The base layer (building shadows) can be downloaded using the following link: https://

www.swisstopo.admin.ch/en/geodata/landscape/buildings3d2.html.

(JPG)

S7 Fig. High resolution maps of the Topographic Position Index (TPI) interaction models

for the 5th of August 2018 and the 9th of August 2019. The colored dots show the model sta-

tions with the measured mean nighttime air temperatures of the correspondent night. The

base layer (building shadows) can be downloaded using the following link: https://www.

swisstopo.admin.ch/en/geodata/landscape/buildings3d2.html.

(JPG)

S8 Fig. High resolution maps of the Relative Height (REH) interaction models for the 5th

of August 2018 and the 9th of August 2019. The colored dots show the model stations with

the measured mean nighttime air temperatures of the correspondent night. The base layer

(building shadows) can be downloaded using the following link: https://www.swisstopo.

admin.ch/en/geodata/landscape/buildings3d2.html.

(JPG)

S9 Fig. Predicted mean nighttime air temperatures derived from the INT models with the

CAD variables FA (A and B), FAB (C and D), TPI (E and F), and REH (G and H) for the 5th

of August 2018 (A, C, E, and G) and the 9th of August 2019 (B, D, E, and H). The colored dots

show the model stations with the measured mean nighttime air temperatures of the correspon-

dent night. The model performance is indicated by the correlation (r), the root mean square

error (RMSE) and the mean bias (MB). The base layer (building shadows) can be downloaded

using the following link: https://www.swisstopo.admin.ch/en/geodata/landscape/buildings3d2.

html.

(TIF)

S10 Fig. Deviations in predicted mean nighttime air temperatures between the four differ-

ent Cold Air Drainage (CAD) Interaction models for the 9th of August 2019. The abbrevia-

tions stand for the different CAD proxies: REH = Relative Height; TPI = Topographic Position

Index; FA = Flow Accumulation; FAB = Flow Accumulation with Buildings. The base layer

(building shadows) can be downloaded using the following link: https://www.swisstopo.

admin.ch/en/geodata/landscape/buildings3d2.html.

(TIF)

S1 Table. Resulting models with the CAD variable FA.

(PDF)
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